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ABSTRACT:

In this paper we describe a method for the approximation of the three dimensional skeleton of a terrain model. We based our analysis
on the contour line model which lets us easily construct separate two dimensional skeletons for each layer. This approach helps to get
rid of construction of the three dimensional Voronoi diagram which is both time and space consuming. The resulting skeleton may find
various application like generalization of terrain models or quick collision detection.

1 INTRODUCTION

Representation of the terrain surface plays an important role in
many aspects of the modeling. Over the years many different
models of the terrain surface have been proposed. From contour
line models, through grids to scattered points all of these models
attracted the attention of many authors. Recent rapid develop-
ment of laser scanning techniques focus a great deal of attention
on models based on scattered points. However, number of points
obtained from laser scanner can be counted in billions, especially
in case of the terrain models, which are usually very large.

Analysis and modeling of any big object, since usually memory
and speed of the system are limited, makes terrain models the
bottleneck of all processes which are using terrain models in any
way.

One of the ways to simplify analysis of the objects is to deal with
its skeleton. Unfortunately the number of points in the model and
a complexity of the three dimensional techniques for extraction of
the medial axis from the Voronoi diagram seems to be the main
obstacle in achieving this goal.

Instead of computing the full three dimensional skeleton, we de-
cided to try to build its approximation. The process uses as an
input contour line terrain model which is widely used in practice
and easy available.

Figure 1: Contours and their skeletons extracted for each layer
separately.

The process starts from building the separate, two dimensional
Delaunay triangulations for each layer of the model. Next, the
medial axis of the each layer is extracted. The layers are then
stacked one over another. Finally, all skeleton vertices in all lay-
ers, except the lowest one, are visited. When a vertex is visited its
nearest neighbor in the layer immediately below is found. Both
vertices are then connected by an arc.

As a result, skeletons in all layers and arcs between them form
a cyclic graph which represents the approximation of the three
dimensional skeleton of the input terrain model.

2 BACKGROUND

To build the approximation of the three dimensional skeleton we
had to employ various techniques. We start by constructing tri-
angulation of each layer and extracting the skeleton from it using
the one step crust and skeleton extraction algorithm designed by
Gold (1999). In the next step a potential residual is computed ac-
cording to the work of Ogniewicz and Kübler (1995). At the same
time closed polygons are detected and skeleton parts marked as
internal or external. Finally we employ a variation of the Li-
Openshaw (Li and Openshaw, 1992) algorithm for line general-
ization to extract the most important parts of the skeletons.

2.1 One step crust and skeleton extraction

One of the simplest algorithms for extraction of the skeleton from
samples placed along two dimensional curve has been proposed
by Gold and Snoeyink in Gold (1999) and Gold and Snoeyink
(2001).
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Figure 2: One step crust and skeleton extraction.

Crust and skeleton extraction relies on the fact, that the Delaunay
edge is a part of the crust if a circle build on both samples forming
Delaunay edge (Figure 2, p0p2) and one of the vertices of the dual
to Voronoi edge p1p3 does not contain other Voronoi vertex.

2.2 Potential residual functions

A central place in skeleton analysis seems to be occupied by the
works of Ogniewicz et al. In Ogniewicz et al. (1993), Ogniewicz
and Kübler (1995) and Ogniewicz and Ilg (1992), they presented
the theory and some of the numerous applications for skeletons
of two dimensional objects. Their work presents methods for the
extraction of potential functions, such as:
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Figure 3: Boundary potential function.

• potential residual ∆RP

• circularity residual ∆RC

• bi-circularity residual ∆RB , and

• chord residual ∆RH

In our approach we utilize only the potential residual ∆RP , be-
cause its value is dependent only on the size of a feature described
by a particular skeleton edge, not the importance of the feature
for the shape. Other residual functions are more suitable for ex-
traction of the important parts of the skeleton (see (Ogniewicz,
1992)), but in our future work we would like to use scale de-
pended factors for generalization of the contour lines, which gen-
erates a need for preservation of true values of boundary dis-
tances.

The potential residual for a skeleton edge dual to a Delaunay edge
between two points: pi and pj , (pi, pj ⊂ fBk(S) can be computed
using following formula:

Wk(pi, pj) =

8
>>>><
>>>>:

min(|W (pi)−W (pj)|, fBk(S)
Σw − |W (pi)−W (pj)|) closed

|W (pi)−W (pj)| fBk(S)
non− closed

(1)

In equation 1 the value of
P
wequals the length of the whole

boundary of a closed polygon, while W (pi) and W (pj) are the
potentials in the vertices pi and pj , respectively.

The value of the residual potential can be computed by first com-
puting the potential in each vertex, with respect to some vertex
for which the potential, without lose of generality, can be set to
zero (Figure 3, p0).

2.3 Shape reconstruction from slices

Closely related to the contour lines in terrain modeling is recon-
struction of shapes from two dimensional cross sectional images.
This is a very intensively studied topic in visualization of hu-
man organs using computer tomography. In works by Boissonnat
(1988) and Bajaj et al. (1996), detailed descriptions of the tech-
niques utilized for shape reconstruction from planar cross sec-
tions are found.

The techniques presented in those works as well as an approach
described by Geiger (1993) will help us to find adjacency rela-
tionships between skeleton branches in neighboring layers.

3 CONTOUR LINES GENERALIZATION

Contour lines are the most wide used model for representation of
terrain models in Cartography and GIS. In parallel with the rapid
development of computer systems, they were more and more uti-
lized for storing and processing geographical data.

The natural need for reduction of those data resulted in many
algorithms for reduction of the complexity of the contour lines.
The description of some of the approaches presented by different
authors can be found in the works of McMaster et al. (McMaster
(1989),McMaster (1987), McMaster and Shea (1992)) as well as
other authors: (Douglas and Peucker. (1973), Gold and Thibault
(2001), Li and Sui (2000)).

As can be seen in later parts of this paper, we will apply a slightly
modified method presented by Li et al. in Li and Openshaw
(1992) and Li and Openshaw (1993). The method is known as
the Li-Openshaw algorithm and is based on the definition of the
smallest visible object (SVO).

The smallest visible object is given by equation:

SV O = St ∗D ∗ (1− Sf
St

) (2)

where: St - scale factor of the source map
D - diameter of the SVO at the map scale. In the range of this
diameter all information about the shape of the curve can be ne-
glected
Sf - desired map scale factor
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Figure 4: Li-Openshaw algorithm for line generalization.

The main idea of this algorithm relies on the removal of some of
the features which are invisible at the desired scale of the map.

To simplify a curve from A to B in Figure 4 by using this algo-
rithm the following steps must be performed:

1. Estimate the SVO by using equation 2.

2. Determine the starting point of the algorithm (point A on
Figure 4).

3. Compute the mean value of the coordinates of A and inter-
section of the circle with radius D equal to SVO, and the
center at A with the curve being simplified (C). This can be
done by using following two equations:

(X −XA)2 + (Y − YA)2 = SV O2

Y − YI
YI+1 − YI =

X −XI
XI+1 −XI

4. Advance start point to intersection point C and repeat step 3
until point B is reached.

This algorithm works in the vector mode, however according to
the suggestions given by the authors in (Li and Openshaw, 1992)
the best results can be obtained using the raster-vector approach.



4 EXTRACTION OF THE CRUST AND SKELETON
INFORMATION FROM SOURCE DATA.

The process starts from the creation of the set of 2D Delaunay
triangulations, one for each layer and dependent on the z coor-
dinate (or elevation) of the samples. This approach opens a pos-
sibility for parallel processing of the data which will result in
improvement of the overall processing performance on multipro-
cessor machines. However, parallelization of the algorithm is out
of the scope of this paper, and will not be explored deeper here.

Separating the triangulation of the each layer lets us to treat it as a
set of points, distributed along the planar curves. Unfortunately at
this moment the triangulation does not contain any information,
neither which Delaunay edge forms an edge of the contour line
nor which Voronoi edge is a part of skeleton.

To extract skeleton edges we will utilize a technique developed
by Snoeyink and Gold which uses fact that that a Delaunay edge
is a part of the crust or its dual is a part of the skeleton.

Figure 5: One step crust and skeleton extraction.

Our approach relies on analysis of the skeleton. To distinguish
which edges are parts of the skeleton we will assign a flag for
each Delaunay edge. The flag set to TRUE, will indicate when
the dual, to the Delaunay edge, is a part of skeleton. The opposite
value of the flag, will mean that this particular Delaunay edge
is an element of the crust. In our case of course this is equal to
assigning the Delaunay edge to a contour line.

Labelling the Delaunay edges has been performed in two ways.
As the criteria for the selection of the approach we used properties
of the input data.

At first *.xyz files were used. The coordinates of the points were
extracted from ArcInfo coverage files. The straightforward solu-
tion in this case seems to be the utilization of the one step crust
and skeleton extraction algorithm.

Source coverage files were also used. They contain informa-
tion about point coordinates, as well as the polygons which those
points form. This information was later used for proper labeling
of the Delaunay edges as a part of the contour lines.

The first of the approaches relies on the sampling density, which
in the case of real data is often not good enough. Besides, unsu-
pervised labelling of the Delaunay edges may sometimes cause
edges to be labelled as crust while they actually do not belong to
any of the contour lines. At the same time some edges which ac-
tually are part of a contour line were labelled as a skeleton (Figure
6).

To get rid of this problem, the results of crust/skeleton extrac-
tion were postprocessed. We performed some simple statistical
analysis of the length of the crust edges in every layer and elim-
inated outliers from the set by labeling all the edges for which

(a)

(b)

Figure 6: Wrong crust edges due to undersampling: intersections
(a) and loops (b).

the length was greater than some threshold as skeleton edges. In
order to make this process easily configurable standard statistical
technique for outliers detection has been used (Tabachnick and
Fidell, 1996).

The threshold was selected experimentally using the following
formula:

l > l̄ + n ∗ σ (3)

where:

l̄- mean length of the crust edge
n - integer value selected experimentally
σ - standard deviation of the edge’s length

In our case possible outliers will all be greater than the mean
length of the crust edges. Due to this only positive values of n
should be taken into consideration. At the same time n can not
be too small in order to prevent disconnection of proper crust
edges. An experimentally selected value of n equal to 6 seems
to be a reasonable choice. This value caused all too long crust
edges to be marked as skeleton. At the same time some of the
edges which actually should keep their label were also changed,
however the number of disconnected proper crust edges remain
at an acceptable level. The distribution of the crust edges lengths
before and after the outlier elimination can be observed in Figure
7.

Unfortunately in the areas of high curvature and poor sampling
density, some unwanted edges, labelled as a crust, still remain.
They result in loops in the middle of the contour line or joins be-
tween neighboring lines. To remove those errors, we compute the
number of the crust edges going out from every vertex of the tri-
angulation. If the vertex has more than two outgoing crust edges,
one of the edges is disconnected. In our data it has never hap-
pened that there were more than three outgoing crust edges. The
edge to disconnect was chosen as that which creates the largest
angle with the remaining two edges (Figure 6b)).
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Figure 7: Distributions of the crust edges after extraction (a) and
(c) and after removal of crust edges for n=6 (b) and (d)

Another way to obtain the necessarily information can be the
usage of the advantages of vector data. Source data were ob-
tained as ArcInfo coverage files, which already contain informa-
tion about polygons. By using this information for each edge of
the polygon the corresponding edge of the Delaunay triangulation
was found and labelled as the crust edge.

Unfortunately, any effort to improve quality of data was insuffi-
cient to correct all errors present in real data. This forced us to
set following assumptions:

1. Source data can contain only closed polygons

2. Open polygons are allowed only on the boundary of the
dataset.

3. A closed polygon can not contain any other polygons inside,
whether it is closed or not.

The first two assumptions protect us from situations when errors
in the data cause skeleton edges to intersect the boundary of the
polygon. In the future we will try to find a solution which will be
able to handle all problematic cases.

The third assumption, was set to avoid the presence of back-
ground skeletons inside the closed polygons.

4.1 Classification of the skeleton edges

After extraction of the contour and skeleton information from the
source data, each layer should contain polygonal chains forming
open or closed polygons. For the sake of simplicity we assume
that there are no open polygons except on the boundary of the
data. Skeleton edges present in each layer can be divided into
three categories:

Figure 8: Perspective view of the potential residual.

• internal, placed inside closed polygons

• external, placed outside closed polygons, but dual to the De-
launay edges joining samples from the same polygon

• background, dual to Delaunay edges joining samples from
two different polygons

The distinction between background skeleton edges and those be-
longing to a polygon can be easily done by checking the polygon
ID number assigned to samples in the previous step. Another dis-
tinction which has to be made is separation of the internal skele-
ton parts from the external ones.

Since information about residual values is already present in our
data we decided to employ it to made this distinction. As can be
seen in Figure 8 the largest value of the residual has a skeleton
edge placed inside the polygon.

4.2 Simplification of the skeleton

By their nature skeletons contain in their structures information
about every, even the smallest perturbation present at the bound-
ary. Sometimes even a perturbation related to a very small pre-
cision error, present in sample coordinates, may generate a long
”hair” in the medial axis. To avoid the presence of the unwanted
branches in our output we decided to simplify the structure of the
skeleton by retracting those branches, which have residual func-
tion value smaller than some threshold.
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Figure 9: Area covered by features of different shape.

Visibility of an object in different scales is related to the area cov-
ered by it. The bigger area covered the smaller scale in which an
object will be visible. In order to do so, all features having a
perimeter smaller than the threshold feature with the largest area
(for a fixed perimeter) must be found (Figure 9). For a fixed value
of a perimeter (or the boundary length) different shapes will cover
different areas. In (Ogniewicz, 1992) three basic shapes are an-
alyzed in terms of boundary length: circle, square and uniform
triangle. Here we follow similar path and for a given boundary



length w we want to evaluate which shape of a feature will have
the biggest area.

It can be proven (see Weisstein (2005)) that out of all shapes,
the circle is the one which encloses the greatest area for a given
value of the perimeter. The same result can be observed in Figure
9 where areas covered by the basic shapes are presented.

To estimate the value of the threshold we used the natural princi-
ple as described in (Li and Openshaw, 1992) and (Li and Open-
shaw, 1993). According to the definition presented in (Li and
Openshaw, 1992), the smallest visible object (SVO) is equal to a
circle with a radius related to the scales of both the target and the
source map. To adapt it to be used together with the residual func-
tions we suggest using a slightly modified version of the natural
principle. To eliminate skeleton branches which define features
”invisible” at some particular scale we used following threshold
during generalization:

∆RH(e) 6 dπ

2
(4)

where d is the diameter of the SVO as can be obtained from equa-
tion 2. Geometrically this can be interpreted as a half arc from pi
to pj (Figure 10).

pi pjd

Figure 10: Adaptation of the natural principle to simplification of
the skeleton.

We assumed that the smallest object which can be drawn at a map
scale has diameter of 0.5− 0.7 mm (parameter D in equation 2),
and using a source data scale which is 1 : 10 000 we attempt to
simplify the skeleton for a few different values of the output scale.
The results of elimination of the invisible skeleton branches using
the threshold obtained by using equation 4.2 can be seen in Figure
11.

(a) (b)
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Figure 11: Simplification of the skeleton for different scales: a)
1:20 000, b) 1:50 000, c) 1:100 000, d) 1:200 000.

5 BUILDING ADJACENCY RELATIONSHIP
BETWEEN LAYERS.

This step of our construction process is similar to algorithms used
in reconstruction of the shapes from computer tomography. How-
ever in contrast to approach presented eg. in (Geiger, 1993), our
approach simply visits all of the skeleton vertices in each layer.
For each vertex, its nearest neighbor in the layer right below is

(a) (b) (c)

Figure 12: Separate layers and their skeletons.

found and connected by the edge to this vertex. Obviously the
lowest layer is skipped in this step.

In Figure 12 three separate layers of the simple terrain model
are presented. Skeletons were simplified to make images clearer.
Stacked contours can be seen in Figure 13 (gray lines denote joins
between layers).

Figure 13: Skeletons in separate layers joined together.

6 CONCLUSIONS AND FUTURE WORK

The resulting skeleton approximation can now be used for gener-
alization of the contour lines to prevent intersections of the con-
tour lines in different layers. In this case, the graph which approx-
imates the skeleton can be used as a search structure. During the
simplification of one layer of the source data, neighboring layers
can be checked for possible intersections. Since search (in neigh-
boring layers) can be performed starting from a triangles nearest
to the currently processed vertex and the triangles are available
in constant time O(1), so presumably queries checking for inter-
sections cam be performed very effectively. Another application
could be, after some postprocessing, a quick collision detection,
based on the simplified skeleton approximation.

Figure 14: Terrain model with contour lines superimposed.

To detect collision with terrain, a skeleton vertex can be used
with some weight, representing the radius of a sphere, attached.



Some preliminary results are presented in Figure 15a. The source
terrain model from Figure 14 is approximated by spheres. The
spheres were constructed by using three vertices (a, b, c) of a tri-
angle from one layer (Li) and a vertex nearest to the circumcenter
of the circle constructed on triangle ∆abc in the layer placed right
overLi. In Figure 15b terrain model superimposed with its spher-
ical approximation can be observed. The skeleton was simplified
before construcing the spheres.

Contour lines of each layer can be processed separately, which in
the case of our test data allowed processing without need for the
development of an out-of-core solution. At the same time in the
case of smaller objects (fewer points in layer) a few layers can be
loaded into memory and processed at the same time.

(a) (b)

Figure 15: Spheres built for each layer.

In the future, except for the simpler skeleton, we would like also
to obtain a simpler shape of the boundary polygon, which even-
tually will lead us to a skeleton based algorithm for contour line
generalization.

Unfortunately, our assumption about closeness of the polygons
will have to be modified in future research, due to the presence in
real data, of open polygonal chains.
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